Published February 2025, Pg. 51-63

Section: Еcology and industrial safety

UOT: 530.12

DOI: 10.37474/0365-8554/2025-02-51-63

The role of green energy in solving global environmental problems

A.A. Garibov Dr. in Ch. Sc. - ANAS

I.A. Rzayeva PhD in Biol. Sc. - Azerbaijan Medical University

E.A. Garibli PhD in Economics - Azerbaijan University of Economics

Keywords:  
Greenhouse effect
carbon dioxide
natural
anthropogenic sources
separation methods
energy
electric energy
green energy sources
wind
solar and nuclear energy
power utilization factor
carbon emission

An analysis of the greenhouse effect, the factors causing it, and the kinetics of historical change was given in the context of the global ecological situation experienced as a result of the greenhouse effect caused by additional anthropogenic carbon emissions on Earth. 
The positive and negative aspects of the greenhouse effect in the Earth’s atmosphere and the amount of carbon dioxide that creates the greenhouse effect in the atmosphere according to a normal lifestyle have been determined. Parameters that ensure a balanced state of carbon dioxide emission and absorption processes that provide an environment suitable for a normal lifestyle have been given.
An analysis of measures and projects implemented at the international level to solve the emerging global environmental problem was given, and in this process, the main role of increasing electricity generation technologies based on carbon energy carriers was proven.
Considering this point of view, expanding the application of carbon-free green energy sources and increasing the scale of projects aimed at reducing the amount of carbon dioxide from the atmosphere are set as the main task. On the basis of the existing statistical data base, specific shares of the use of renewable alternative energy sources compared to the main energy sources have been revealed in the world and in individual countries such as the Republic of Azerbaijan. So far, the share of green energy sources such as wind and solar in the world does not exceed 15–16 % of the total energy supply and it has been found that it is far from the status of the main energy source.
On the example of the Republic of Azerbaijan, which has a large amount of sources of carbon energy carriers, the potential and use of alternative sources such as wind and solar energy and the existing problems and difficulties in these processes were analyzed. 
Ways of making unstable energy sources such as sun and wind stable are shown, and specifically ways of efficient conversion of wind energy using hydrogen, which is a universal energy carrier, are shown. The repayment status of the invested capital of wind, solar and nuclear power plants with the same power potential has been comparatively analyzed. It has been determined that the advantage of nuclear power plants is manifested in terms of the percentage of use of the energy potential installed at the stations, the price of the energy produced and the method of return on invested capital. Based on the results obtained, in the context of the COP29 decisions, upcoming tasks and ways to implement them are outlined.

References:

1. Болин Б., Деес Б., Ягер Дж., Уоррик Р. Парниковый эффект, изменение климата и экосистемы: пер. с англ. – Ленинград: Гидрометеоиздат, 1989, 560 с.

2. MacDicken K.G. A Guide to Monitoring Carbon Storage in Forestry and Agroforestry Projects. Arlington, VA Winrock International, 1997, 87 p.

3. Poyry J. Analysis of Wood Product Accounting Options for the National Carbon Accounting System: Canberra: Australian. Greenhouse Office, 2000, 35 p.

4. Никитин А.Н. Аспекты участия лесного сектора в глобальном цикле // Труды БГТУ, № 1, Лесное хозяйство, 2006, с. 108-111.

5. Лесные почвы и изменение климата: Материалы IX Всероссийской научной конференции с международным участием.  ЦПЭПЛ РАН, 2021, 227 с.

6. Романовская А.А. Коротков В.Н. Баланс антропогенных и естественных потоков парниковых газов наземных экосистем Российской Федерации и вклад поглощения в лесах. 2024. https://carbonplatform.ru/stati  

7. Ational Renewable Energe Agen. https://www.irena.org  

8. https://encost.com  

9. Word Meterological Organization WMO https://wmo.iaea.node

10. International Atomic Energy Agency https://www.atomic-energy.ru

11. Атомная энергия 2.0 https://www.atomic-energy.ru

12. TAdviser https://www.tadviser.ru

13. Energy Transition Institute Statistical revew of world energy. 2023, 2024. https://www.energyinst.org

14. BP: Statistical Review of Word Energy. 2023, 2024. https://www.energyinst.org.stati

15. International Renewable Energy https://www.irena.org

16. Гарибов А.А. Термо – и радиационно-гетерогенные процессы в атомно-водородной энергетике. – М.: Наука, 2023, 321 с.

17. International Energy Agency. The Future of Hydrogen, Seizing Today’s Opportunities // International Energy Agency, Paris, France, 2019.

18. IRENA. Hydrogen. A renewable energy perspektive. International Renevable Energy Agency, Abu Dhabi. 2019.

19. Блинов Д.В., Борзенко В.И., Бездудный А.В., Кулешов Н.В. Перспективные металлогидридные технологии хранения и очистки водорода. Проблемы энергетики, 2021, т. 23, № 2, с. 149-160. https://doi.org/10.30724/1998-9903-2021-23-2-149-160

20. Ажажа В.М., Тихоновский М.А., Шепелев А.Г., Курило Ю.П., Пономаренко Т.А., Виноградов Д.В. Материалы для хранения водорода: анализ тенденции развития на основе данных об информационных потоках // Вопросы атомной науки и техники Сер. Вакуум, чистые материалы, сверхпроводники. 2006, № 1, с. 145-152.

21. Месяц Г.А., Прохоров М.Д. Водородная энергетика и топливные элементы // Вестник Российской академии наук, 2004, т. 74, N 7, с. 579-597.

22. Карпов Д.А. Водородная энергетика: хранение водорода в связанном состоянии / Д.А. Карпов, В.Н. Литуновский. – СПб: АО “НИИЭФА”, 2016, 94 c.

23. Qəribov A. Praktiki neytron və nüvə reaktor fizikası. Nüvə enerjisinin istifadəsi: Durum, problemlər və perspektivlər. – Bakı: “Elm”, 2022, 680 s.

Links