Published October 2022, Pg. 47-52
Section: Oil refining and petroleum chemistry
UOT: 541.128.542.547
DOI: 10.37474/0365-8554/ 2022-10-47-52
Oxidation of chlorotoluene, toluene and chlorobenzene in the presence of Ag/MnO2 catalyst
I.H. Melikova Cand. in Tech. Sc. - Institute for Catalysis and Inorganic ChemistryThe process of oxidation of toluene, chlorotoluene and chlorobenzene is studied and the optimum parameters for successful implementation of the synthesis modeling industrial processes selected as well. The results obtained in catalytic oxidation of toluene, chlorotoluene and chlorobenzene justify that Ag/MnO2 based catalytic systems have high activeness. Mentioned hydrothermal synthesized catalyst keeps its activeness and properties during the reaction of transition of compounds of toluene, chlorotoluene and chlorobenzene. In the presence of catalysts with Ag/MnO2 nanoparticles, the reaction runs with high percent (90 %) of conversion. The activeness of the catalyst in conversion process of these compounds is optimal with 8000 s-1 volume rate. The optimum temperature for high activeness of toluene, chlorotoluene and chlorobenzene is equal to 543, 490 and 658 К correspondingly. According to the results of analysis on the effect of the components and particles size of catalysts on its activeness, the systems are active in high conversion of the components of Ag/MnO2 + Mn, R-Ag/MnO2 + Ag, R-Ag/MnO2 + Al. These systems containing nanoparticles have high catalytic activeness as well.
References:
1. Huang B., Lei C., Wei C., Zeng G. Chlorinated volatile organic compounds (Cl-VOCs) in environment-Sources, potential human health impacts, and current remediation technologies // Environment International, 2014, v. 71, pp. 118-138.
2. Scirи S., Liotta L.F. Supported gold catalysts for the total oxidation of volatile organic compounds // Applied Catalysis B: Environmental, 2012, v. 125, pp. 222-246.
https://doi.org/10.1016/j.apcatb.2012.05.047
3. Malikova I.G., Efendi A.J., Babayev E.M., Faradjev G.M., Musazade K.Sh., Salahli A.M. Catalytic oxidation of dichlomethane and tetrachlorethylene over noble metal catalysts // Journal of Chemistry and Technologies, 2021, v. 29, iss. 1-2, pp. 108–116. DOI:10.15421/082110
4. Tang X., Chen J., Li Y., Li Y., Xu Y., Shen Wl. Complete oxidation of formaldehyde over Ag/MnOx-CeO2 cata-
lysts // Chemical Engineering Journal, 2006, v. 118, No 1-2, pp. 119-125.
https://doi.org/10.1016/j.cej.2006.02.002
5. He C., Cheng J., Zhang X., Douthwaite M., Pattisson S., Hao, Z. Recent advances in the catalytic oxidation of volatile organic compounds: A review based on pollutant sorts and sources // Chemical Reviews, 2019, v. 119, pp. 4471-4568.
6. Einaga H., Teraoka Y., Ogata A. Catalytic oxidation of benzene by ozone over manganese oxides supported on USY zeolite // Journal of Catalysis, 2013, v. 305, pp. 227-237.
7. Huang H., Ye X., Huang W., Chen J., Xu Y., Wu M., Shao Q., Peng Z., Ou G., Shi J. et al. Ozone-catalytic oxidation of gaseous benzene over MnO2/ZSM-5 at ambient temperature: Catalytic deactivation and its suppression // Chemical Engineering Journal, 2015, v. 264, pp. 24-31.
8. Solsona B., García T., Sanchis R., Soriano M.D., Moreno M., Rodríguez-Castellón E. Agouram, S., Dejoz A., López Nieto, J.M. Total oxidation of VOCs on mesoporous iron oxide catalysts: Soft chemistry route versus hard template method // Chemical Engineering Journal, 2015, v. 290, S1385894716300237, pp. 273-281. https://doi.org/10.1016/j.cej.2015.12.109
9. Aguero F.N., Scian A., Barbero B.P., Cads L.E. Combustion of volatile organic compounds over supported manganese oxide:Influence of the support, the precursor and the manganese loading // Catalysis Today., 2008, pp. 133-135, pp. 493-501. https://doi.org/10.1016/j.cattod.2007.11.044.
10. Xie S., Liu Y., Deng J., Zhao X., Yang J., Zhang K., Han Z., Arandiya H., Dai H. Effect of transition metal doping on the catalytic performance of Au-Pd/3DOM Mn2O3 for the oxidation of methane and o-xylene // Applied Catalysis B: Environmental, 2017, v. 206, pp. 221-232.
https://doi.org/10.1016/j.apcatb.2017.01.030
11. Zeng J., Liu X., Wang J., Lv H., Zhu, T. Catalytic oxidation of benzene over MnOx/TiO2 catalysts and the mechanism study // Journal of Molecular Catalysis A: Chemical, 2015, v. 408, pp. 221-227. https://doi.org/10.1016/j.molcata.2015.07.024
12. Cao S., Fei X., Wen Y., Sun Z., Wang H., Wu Z. Bimodal mesoporous TiO2 supported Pt, Pd and Ru catalysts and their catalytic performance and deactivationmechanism for catalytic combustion of Dichloromethane (CH2Cl2) // Applied Catalysis A: General, 2018, v. 550, pp. 20-27.
https://doi.org/10.1016/j.apcata.2017.10.006
13. Roberto F. Bimetallic Catalysts for Volatile Organic Compound Oxidation // Journal of Catalysis, 2020, No10,
p. 661; doi:10.3390/catal10060661
14. Anmin N., Hangsheng Y., Qian L., Xiaoyu F., Famin Q., Xiaobin Z. Catalytic Oxidation of Chlorobenzene over V2O5/TiO2–Carbon Nanotubes Composites // Industrial & Engineering Chemistry Research, 2011, v. 50, No 17,
pp. 9944-9948. https://doi.org/10.1021/ie200569a
15. Burgos N., Paulis M., Mirari Antxustegi M., Montes M. Deep oxidation of VOC mixtures with platinum supported on Al2O3/Al monoliths // Applied Catalysis. B Environmental, 2002, v. 38, pp. 251-258.
16. Chen L., Liao Y., Xin S., Song X., Liu G., Ma X. Simultaneous removal of NO and volatile organic compounds (VOCs) by Ce/Mo doping-modified selective catalytic reduction (SCR) catalysts in denitrification zone of coal-fired flue gas // Fuel, 2020, v. 262, pp. 116485.
17. Li G., Shen, K., Wang L., Zhang Y., Yang H., Wu P., Wang B., Zhang S. Synergistic degradation mechanism of chlorobenzene and NO over the multi-active center catalyst: The role of NO2, Brønsted acidic site, oxygen vacancy // Applied Catalysis. B Environmental, 2021, v. 286, pp. 119865.
18. Liu Y., He D., Duan J., Wang Y., Li S. Synthesis of MnO2/graphene/carbon nanotube nanostructured ternary composite for supercapacitor electrodes with high-rate capability // Materials Chemistry and Physics, 2014, v. 147,
(s 1–2), pp. 141-146. DOI:10.1016/j.matchemphys.2014.04.020
19. Li J., Qu Z., Qin Y., Wang H. Effect of MnO2 morphology on the catalytic oxidation of toluene over Ag/MnO2 catalysts // Applied Surface Science, 2016, v. 385, pp. 234-240.
https://doi.org/10.1016/j.apsusc.2016.05.114
20. Xu R., Wang X., Wang D., Zhou K., Li Y. Surface structure effects in nanocrystal MnO2 and Ag/MnO2 catalytic oxidation of CO // Journal of Catalysis, 2006, v. 237, pp. 426-430.
https://doi.org/10.1016/j.jcat.2005.10.026